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The structure of the hard sphere dipolar liquid and the electrolyte with added hard sphere ions near
a charged hard planar electrode has been investigated with the reference hypernetted chain integral
equation (RHNC). We find a decrease of the dielectric function € near the wall, a decrease of € in
the fluid due to saturation, a field dependent change in the dipole density near the wall, and a
decrease of the ion density near the electrode due to solvation. Related to the demixing instability
of the ion-dipole mixture, the ions suddenly concentrate near the surface at higher fields and lead to
a sharp increase in the differential capacitance. Also electrostriction in the pure dipolar liquid with
a field in the bulk is considered. © 1995 American Institute of Physics.

I. INTRODUCTION

The structure of the double layer near an electrode de-
termines its capacitance and charge transfer properties. Since
the Poisson—Boltzmann approach by Gouy and Chapman,'?
there have been many attempts to build structural models,’
e.g., including a distance of closest approach for ions, the
Stern layer, introducing layers with different dielectric con-
stants, usually lower € closer to the electrode.* or even
contemplating water clusters with compensated dipole
moments.S Especially for the capacitance, the contribution
from the metal surface has also been modeled.””

The methods of statistical mechanics have been applied
more recently: Monte Carlo (MC) or molecular dynamics
(MD) simulations'®!! as well as integral equation calcula-
tions like hypernetted chain (HNC) or extensions of it. We
concentrate on the latter, because our method of investigation
is also an integral equation version. The investigation of the
double layer with integral equations started when Blum and
Henderson'>"?  formulated the Henderson—Abraham—
Barker'* equations for Coulomb interactions. During the fol-
lowing ten years, mainly the correction of the Gouy—
Chapman theory due to finite ion sizes was investigated us-
ing the primitive model of an electrolyte, i.e., hard sphere
ions.'>72® Because many details of the double layer structure
are due to solvent properties as well as to ion interactions,
more sophisticated electrolyte models are required. Before
one really comes to the solvent water with its complicated
molecular structure and hydrogen bonds, some essential sol-
vation properties can be studied with hard sphere dipoles as
the solvent. This is the object of this article.

The hard sphere dipolar liquid has been studied earlier
by Wertheim?’~® and Héy and Stell**~° and the mean spheri-
cal approximation (MSA) of the integral equations has been
solved exactly.’! Near the surface Isbister and Freasier’>
evaluated MSA approximations. Later in linearized
(LHNC)® and quadratic (QHNC)** approximations the an-
gular dependent dipole interaction was considered small and
was expanded in the HNC closure. This is not good enough
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for the magnitude of dipole moments like those in water or
other solvents. An important step forward was made by Fries
and Patey®® and by Caillol*® in treating the angular depen-
dencies in the exponent of the HNC closure by bringing it
down by a derivative. Now only the total and direct correla-
tion functions need expansions in spherical harmonics, not
the exponential in addition. Applications of this method have
been made to homogeneous dipolar liquids®>?’ and
electrolytes.®®* Also an interface has been approached by
treating a mixture containing spheres with very large radii,
neutral as well as charged.*® These large spheres are then
increased and the distributions of the smaller dipoles near the
large sphere are considered to approach those in front of a
planar wall. This limiting process apparently meets some
convergence problems.*’ Also a solvent model containing an
additional quadrupole moment has been treated in this
way. "% More recently Dong et al.** calculated the distribu-
tion of hard sphere dipoles and hard sphere ions in front of a
planar uncharged wall. Very recently the interaction of a di-
pole model with the metal electrons has been considered.*
We present here results for the uncharged as well as for the
charged surface for the pure hard sphere dipolar fluid and for
the ion-dipole mixture electrolyte.

In Sec. II we describe the electrolyte model and in Sec.
IIT we outline the method of calculation. Section IV gives the
results and a discussion for the pure dipolar fluid which does
not show screening of an applied field. Section V discusses
the results for the ion-dipole mixture. The effects of electros-
triction are considered in Sec. VI. Some conclusions are
summarized in Sec. VIL.

Il. THE MODEL AND THE METHOD OF CALCULATION

Our electrolyte is a mixture of hard sphere ions of diam-
eter o with charges =g in the center and solvent particles
modeled as hard spheres of the same diameter ¢ with a cen-
tral dipole moment u. The interaction potentials u, g(1.,2)
between particle of species @ at 1 and B at 2, where for
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TABLE I. Parameters defining the system.

in reduced dimensions

=Bl o)
q**=p(q* o)

Parameter

w: dipole moment
q: ion charge

w: surface charge density o*=wd/e
pq: dipole density ph=pyo’
p;: ion density pi=p;c’

T: temperature and B8=1/kgT
o: diameter of ions and dipoles

dipoles the coordinates i =(r; ,w;) include in addition to the
position r; the dipole orientation w;=(6;,p;), are for
[r,—r|>0:

2

1 q

s s =+ —_—
ion—ion:  wu,.(1,2) S hmey 1|’ (1)
_ _ _ 1 gqp(ry—ry)
ion—dipole: uid(l,2)—+47760 ot (2)
dipole—dipole:
u(12)=— 1 3y (=) [ py- (ry—1y) ]
ddi = dme, |1'2_1'1|5

MM

-, 3)

|1'2_1'1|3>

and, for [ry—r|<o, u,p(12)=+oo.

We measure all our lengths in units of o. Because all
interactions are weighted in their proportion to k7', we have
the following parameters, which define our system (see Table
D).

The electrode wall at z=0 is infinitely hard, the particle
centers can approach up to z=0/2:

< g @)

A homogeneous surface charge density w leads for
z>0/2 to the interactions

v,(z)= for

wall-ion: v.(z)=*ge™(z)==*¢q (—eglw 7t @g),

o®)
wall—dipole: v,(z)=—u EZ(z) cosf
=—pu (€ ') cosd . (6)

We will also consider the uncharged wall w=0. With
these interactions the resulting densities are translationally
invariant parallel to the surface and depend therefore only on
the distance z from the wall. The orientational dependence of
the dipole density has cylindrical symmetry around the sur-
face normal and therefore only the angle 6 between dipole
direction and surface normal shows up as a variable.

We neglect image interactions which are expected in
front of a metal electrode. These interactions make the
particle—particle potential dependent on the distance from
the wall a severe complication. A recent integral equation
study*® showed that inclusion of the interactions of a particle
with all the images of the other particles leads to results very

close to those for totally neglecting the image interactions,
while inclusion of only the own image of a particle, which
could be easily handled as a surface potential, gives com-
pletely wrong results. Therefore neglecting images is a rea-
sonable approximation.

lll. THE METHOD OF CALCULATING THE PARTICLE
DISTRIBUTIONS

We calculate the particle densities as well as the orien-
tational distributions for the dipoles from integral equations
derived by density functional arguments.*#"~** We use the
hypernetted chain approximation (HNC) to these equations
and include some additional repulsive wall-particle potential
derived by Rosenfeld,”® which leads to an agreement with
simulations at the uncharged electrode. It improves the ap-
proximate treatment of the short ranged hard core interac-
tions similar to the additional effective potentials in a “‘ref-
erence hypernetted chain” (RHNC) approximation in the
bulk.>'®? The densities are calculated from the set of equa-
tions

pa(l)

a

In|

:_Bva(1)+2 j d2 [py(z)_plj]cya(zwl)
Y
—B(1) . 7

The direct particle—particle correlation functions c,g(1,2)
are calculated for the homogeneous electrolyte in the RHNC
approximation as outlined in Refs. 53 and 54. The approxi-
mate wall-particle bridge functions B(1) are taken equal for
ions and dipoles and are given by the analytical expression
from Ref. 50:

B(z))=A[(z,—20)*+3(z;—20)%]. (®)

We have adjusted the two parameters A and z, until our
integral equation results for the reference system, i.e., hard
spheres at a hard wall, agreed with the Monte Carlo simula-
tions by Levesque er al.' The optimal values are A=11/4
and z,=0.45.

Equation (7) will be used to calculate the ion
(a=+,—) density profiles

p+(z21)
B

*

In|

=—Pv+(z1)—B(zy)

1
+ Ef dry dw; [py(z2,0,) = pi] coy(riy 0, @1)

+ > fdl'z [Py(Zz)_Pl;]C:y(rlz) . ©)
y=+.-

The density profile as well as the orientation distribution for
the dipoles are calculated with
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pd(zl 30 )
pd

In =—PBvy(zy,0,)—B(z;)

1
+ o[ ey dos Tou(za 0 -2

Xcga(ri; @y @y @)

+ > jdl'z [pyz2)—p ]Cdy(r12 w; wp) . (10)

y=+,-

In order to solve this equation the angular dependent bulk
direct correlation functions must be expanded into a basis set
of rotational invariants ®'12/(w, ,w, ,w,,), which are a lin-
ear combination of spherical harmonics:>>

(w0, 0= 2 C(Li 1N NN)
INPVSY

4
T (g
L1201
XY (@)Y (@) Yin(01), (11)

where ®'12!(w, ,w,,w;,) is a rotational invariant special-
ized for linear molecules and C(I;l,l;A\,\) are the
Clebsch—Gordan coefficients. In front of the wall the density
profiles depend only on the distance z from the wall. In ad-
dition to z the dipole density is also a function of the dipole
orientation, measured by the angle 6 with respect to the sur-
face normal because of the cylindrical symmetry. The dipole
distribution can be expanded in a series of Legendre polyno-
mials

lmax

)=2 piz) p(cosd) . (12)

=0

pa(1)=p4(z,0

We now use the expansions [Egs. (11) and (12)] in Egs. (9)
and (10) and perform the angular integration.

As usual in coulombic systems it is appropriate to ex-
tract from the direct correlation functions the long-range part
by

Ca'y(rIZ):ca'y(rlZ)SR_Buay(r12)®(r12_O')s (13)
where
@ 0 7'12<0'
(rp—0o)= | o (14)

By the step function we avoid the singularity to be intro-
duced into the short-range direct correlation function
Cay(T12) SR The step function is convenient because we solve
the integral equation system in r space. After including the
separation Eq. (13) in Egs. (9) and (10), we collect the long-
range parts together with the external field to a resulting
mean field ¢(z;) and E (z;), which are respectively the
mean electrostatic potential and the z component of the elec-
tric field intensity inside a cavity with diameter o. The inte-
gration parallel to the surface can be done separately which
leads to the definition of some short-range functions:

!. Chem. Phys., Vol. 102, No. 22,

o
— SR
Ca'y(ZZ_Zl)|_fl Idrl2 2 Cay(rlz) P
177

C(;Z(Zz_zl):f ldrlz ' C(;Z(rlz)SR Pl(Cosalz),
77
(15)

oo

! R
driyriy e (r)® Pl(Coselz),
(S|

I _
Cad (ZZ_ZI)H_f

oo

Cizoyl(zz_z])u:(_l)]f dripryp

lza—z;

XCO”(rlz)SR p(cosbyy) .

Finally we obtain a system of coupled integral equations for
the ion densities

4

21+1

p= (11)
Pl

=—B*q ¢(z))]- B(z]>+2

n

XJ dz, [pl(z2) = ph] ¥i(z2—21))

+2m > f dz; [py(z2)—p3]

y=+.-
Xciy(ZZ_zl)Ha (16)

and the dipole density

Elpiz(h) P,(COS‘91)

B
Pa

=—B[—w E/z,) cosb;1—B(z,)+ >,

mnl

21+
XN o= e C(mnl OOO)I dz; [pl(z2)—po]

21+1

4T

2n+1

X cg”;l(zz—zl)”pm(cosal)vL 2772

l

X > J dz, [py(22)—p5]

y=+.-

Xciiy(z2=21)p (cosby), (17)
where for z>307/2:

e(z21)= @u(z1) T @4(z1), (18)

E(z))=E (z))+Eq(z) (19)
with

8 .Jure 1995



9008 E. Diaz-Herrera and F. Forstmann: lon-dipole-electrolyte near a charged wall

w

1 (= 1 [z
21)=——z1—— | dz, 2, 4q(z +—f dz
<Pq( 1) € 1 60]() 2 22 9(22) € Jo 2

z1to

X(z2—21) q(z2) — 53— dz; q(z,)

260 71— 0

X(o—|z—z4]), (20)

1 ©
eaz1)=— _f dz, P(z;)
60 21

3 ]—f“ﬂrdzz P(2,) [(Zz;zﬂ B (zo—21)

2e0).-0 22—z
(21)
and
(Zl)__+_j dz; q(z3)
1 JZWT [(12_11) (z2—21)
+_ dZ Z - B
260 71— 0o ZQ( 2) |Z2_Zl| o
(22)
L fate (z0—21)°
E (zy)= Z_GOLI— dz, P(z;) T~ (23)

For [0/2<7z,=<30/2] the integrations have to stop at ¢/2,

2+ +
where all densities drop to zero: f ! U—> ) ;‘/2 7

In all equations above P(z) is the z component of the
mean polarization vector

1
P()= f dQ pu(0) py(z.0), (24)

P(z)=3 Mpdhd(z)' (25)

The first three terms of Eq. (20) are the solution of Poissons
equation for the z-dependent charge density q(z)
=3+ —qaPa(2) With @, ()=0 and de,/9z |,_¢=—¢ 'o.
The surface charge density w of the electrode is left expli-
citly as a parameter in the calculation. Charge neutrality re-
quires

fowdz g2)=—w . (26)

The last term in Eq. (20) subtracts the potential at the center
7, of the excluded sphere with charge g(z,). Analogously
one can understand the terms in Eq. (21). The boundary con-
ditions for the Poisson solution are ¢,(*)=0 and
E()=0.

The electric field in Eq. (19) is not the derivative of the
potentials in Eq. (18), because a derivative with respect to
the center of the sphere moves the sphere around while the
field for a fixed distribution around the sphere is needed. So
the fields must be summed explicitly and are recognized in
Eq. (22) as the derivatives of the Poisson equation contribu-
tions of Eq. (20) minus the field at the center of a sphere with
charge ¢q(z,).

!. Chem. Phys., Vol. 102, No. 22,
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FIG. 1. The density profile for a hard sphere dipolar fluid at the uncharged
wall: RHNC (solid line) and MC result ((J) of Ref. 10.

A plane with constant normal polarization has no field
outside, therefore only P(z) from [z—o,z+ o] contributes
to Eq. (23). Because of the difficult singularity of the dipole
field®® only direct integration of the field contributions at the
center of the cavity over the slab with polarization P(z)
gives an unambiguous result, which can then also be ob-
tained from the volume charge —divP(z) and the surface
charge n-P(z).

In order to derive integral equations for the coefficients
of the expansion of the dipole density [see Eq. (12)] we use
the method of Fries and Patey®® without additional approxi-
mations needed in LHNC*® or QHNC.* A differentiation
with respect to 0 (z differentiation for the /=0 coefficient)
removes the logarithm function on the left-hand side of Eq.
(17) and using orthogonality relations of Legendre polyno-
mials we obtain integral equations for all coefficients of the
dipole density expansion. The system of integral equations is
then solved iteratively for all pfi(z) (1=0...1,,,,) coefficients
as well as for p.(z) and p_(z2).

IV. THE STRUCTURE OF HARD SPHERE DIPOLES
NEAR THE PLANAR ELECTRODE

First we solve Egs. (17) setting the densities of the ions
zero. Then the electric field due to the charge density w on
the electrode is not screened, but is only weakened due to the
dielectric constant of the dipolar liquid. We therefore have as
boundary conditions that the electric field, the density, and
the orientation of the dipoles becomes constant in the bulk at
large distances from the surface, while the electric field di-
rectly at the electrode is €, ' w=E(z=0).

A. The uncharged electrode

When the electrode is uncharged there is no preference
of the dipole polarity, the symmetry relation
pa(z,0)=py(z,m— 6) applies and consequently the expan-
sion of py(z,0) according to Eq. (12) contains only even
Legendre functions. Therefore E (z;)=0 according to Eq.
(23) vanishes for all z .

8 .Jure 1995



E. Diaz-Herrera and F. Forstmann: lon-dipole-electrolyte near a charged wall 9009

TABLE II. Both sides of the contact theorem [Eq. (28)].

w? pi(z=0/2)/p}” P/
0 574 571
2 467 422
3 3.99 333

In Fig. 1 we compare our calculated dipole density

1 0
py(2)= Ef pa(z,0) dQ=p,(z) (27)

B __

obtained for the bulk density p,®=0.7 and dipole strength

,u*2= 2 with simulation results from Ref. 10.

The wall-particle bridge function [Eq. (8)] is included in
Eq. (17) as an additional repulsive surface potential. The
agreement with the computer simulation is very good. Our
calculated density profile shows the proper layering and the
correct contact value is achieved. We have checked the con-
tact value theorem

p¥(z=0l2) p

— = (28)

Pa Pia
calculating the pressure p by the virial equation using bulk
RHNC correlation functions for a density p5* .

Table II compares the sides of Eq. (28) at p5*=0.7 for
three dipole strengths. The pressure and the contact value of
pa(2)* decreases for stronger dipole moments because on
average the dipole interaction is attractive. With the reduc-
tion of the contact value of p,(z)* and pressure we find also
a slight decrease of the layered ordering.

Near the surface the dipolar liquid is ordered with re-
spect to the orientation. The expansion coefficients of
p4(z,cos6) show a lot of structure (cf. Fig. 2). In Fig. 3 we
show a contour plot of the probability of orientation
pa(z,cos6)/2p,(z). Preferred orientation is indicated by val-
ues larger than 0.5. The contours encircle the maxima. Near
the surface the dipoles are orientated preferentially parallel to

I ' 1
0.10
m m 2
% % 0.06
N L)
N;_"U Qo‘f
0.02
R/ ¥ ST S — 0,02 Ut
0.5 1.5 25 35 0.5 1.5 25 35
z/o z/ o

FIG. 2. The expansion coefficients of the dipole density [Eq. (12)] for
B —
p7*=0.7.

Perpendicular
Orientation

0.5
Parallel

Orientation 0 cosH

-05

Perpendicular
Orientation

FIG. 3. Contour plots around the maxima (> 0.5) of p,(z,c0s0)/2 p,(z).
The first layer near z=0.5 o is orientated parallel to the wall, while the
following layers at z=1.5 ¢,2.5 ¢,3.5 o are orientated perpendicular to the
wall.

the surface (cosf#=0). This is the result of image forces
which can be understood by a continuous medium argument.
The dipoles are in a fluid of high dielectric constant facing an
electrode with an effective dielectric constant 1. At such a
boundary the dipoles see image charges of the same sign.
Then the parallel orientation of the contact dipole with its
image dipole is energetically more favorable. But the second,
third, and fourth layer prefer the normal orientation. It is
rather probable that these dipoles form chains. In the low
density regions between the layers (at z=2.0,3.0), the di-
poles parallel to the surface probably close rings to minimize
the stray fields.

The results at the uncharged electrode compare favor-
ably with earlier RHNC>"*® and LRHNC* results and also
with the results of Ref. 40 obtained at a curved surface.
Without external bias the differences are small. This changes
for the charged surface.

B. The charged electrode

Again for p§*=0.7 we calculated the dipole structure
for several positive surface charge densities w and the two
dipole interaction strengths /.L*2:2 and ,u*2=3. We have
chosen these parameters to allow a direct comparison with
the calculations of Ref. 40 where a macroion represents the
charged electrode. There the charge is Ne on a sphere of
diameter 2R=300 (e elementary charge, 0=2.8 A). We
choose w* = wa?/e with the surface charge density w. Table
III compares N,w, and o™ and also gives the electric field at
the surface. We remind that in electrochemical experiments

TABLE III. Relations between charge parameters and the external field. N is
the number of elementary charges e on the macroion (Ref. 40).

N o* o(C/m?) Eo(X 10" V/m)
2827 0.01 0.020 0.226
56.55 0.02 0.041 0.463
63.00 0.0223 0.046 0.520
84.82 0.03 0.061 0.689
108.0 0.0382 0.078 0.881
113.0 0.04 0.082 0.926
126.0 0.045 0.092 1.039

J. Chem. Phys., Vol. 102, No. 22, 8 June 1995
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5.0 T T g T d T T T T T
, :
B*
40} py =0.7
---- ©*=0.0382
——- ©*=0.0223
mcf 3.0 0*=0.0
~
=
N
g
o
Q 20
1.0
00 i 1 L 1 L L L L i 1 '
0.5 15 25 35 45 55 6.5

Z]G

FIG. 4. The dipole density p,(z) for different electrode charges w*. The
inset shows p,(z)/ pg near contact.

0.25 C/m? is already a very large surface charge density™
and fields of strength 4 V/A are the highest achievable in
field ion microscopes.

In Fig. 4 we plot the dipole density pd(z)/2pg . We see
the increased layered order with increased surface field. The
increased contact value results from the dipole attraction in
the field gradient. We therefore expected an increase of the
dipole surface excess

[*=g? f:[mz)—pB]dz. (29)

To our surprise Fig. 5 shows that dipoles are expelled from
the surface region when charging the electrode. Figure 6
gives more insight by monitoring the density of dipoles per
layer:

A p*(z) dz . (30)

i—1)o

ﬁ*<i>=ﬁ*[z=(i—o.s>a]=lf
g J(

-0.130 S S B e —
2
-0.135 | p”'=0.7 ® -
'
!
1
-0.140 | [
]
r |
]
-0.145 G-l g -
o ;
-0.150 | e .
6-o-eF
-0.155 } -
-0.160 N E—— TR —
0.00 001 002 ,003 004 005
D)

FIG. 5. The surface excess I'; of dipoles [Eq. (29)] vs surface charge.

0.620 r T T T 0.700 . T r T
0.615 | F_)*(l) P Joess} P*(3) 1
0.610 | Ef? { 0690 P-----0o__ 1
o ese\
0.605 | n"d 4 0685 | %@Q L
0.600 | 00" 4 0.680 } s
0.595 T’“"" loss} 1
0.590 . . . . 0.670 . . : .
0.700 r T r T 0.700 T . T T
R R SN

0695 | 4 4069 F _ e, E

p*@ p(4) Y
0.690 4 0690 } QQ
0.685 | 4 0685 | -
0.680 | 4 0680 } E
0.675 | o 10675} -

b- - -0 - - 06 - -066 ex®
0.670 L . : L 0.670 L L ; L
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
* w*

FIG. 6. Density per layer [Eq. (30)] for the first four layers (p% *=0.7,
2
pu* =2).

Only in the first layer are the dipoles attracted; further away
from the electrode the density p*(i) is reduced. When the
external field forces the dipoles to be parallel, their mutual
interaction is unfavorable and they lower their density, if not
a strong field gradient attracts them. According to Fig. 4,
especially the regions around z=10 and 20 between the
*““chain positions” 0.5¢,1.50,2.50,..., where without an ex-
ternal field the dipoles lie parallel to the surface (cf. Fig. 3),
are emptied. The density in the second layer nicely demon-
strates the competition between external attraction and mu-
tual repulsion. The density in all layers near the surface is
smaller than p5*=0.7 in the bulk. In stronger electric fields
the layered order extends deep into the liquid (Figs. 4 and 8).
This is one aspect, in which the results at the curved surface
(2R=300)* differ from ours, because their external field
still decays like r~2. We demonstrate in Fig. 7 the faster

8.0 T T T T r T
! o Macroion
o o Wall
K sl
6.0 F\ pe =2 .
‘:‘\\ P =0.7
.o +=0.045
o LN
\g 4.0 B \\\ \\\ -1
O;J \\\ S, ®-o____
2.0 + n\\ SO L o
_____ Heee_
B
—
OO i L " 1 2 1 L
0.5 1.5 2.5 3.5 4.5
z/c

FIG. 7. Decay of the density maxima near a macroion (Ref. 40) and in front
of a planar wall.
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0.8 T T T T T T T T T

06 | s i
L ®*=(.0382

A} L I S . T TP UPEPPIEPL - gy A=Al

04 |
@*=0.0223

1]
]
:
I
sl ]
kAAAﬁ,
02 F R

OO 1 [} L 1 L 1 1 L 1

08 13 T L} T L} T T T T
2

w3

<C0S0>

4

(LA

Y YAV A AR e P
X .

L [} 1 L I}
10.0 120 14.0 16.0 18.0 20.0
zlc

00 20 40 60 8.0
FIG. 8. The average orientation {cos @) vs distance z from the electrode.

decay of the density maxima in the layers for the highest
available external field.

It is interesting to compare the orientational structure for
two different dipole strengths in Fig. 8. The peaks of orien-
tation parallel to the field are at the maxima of density un-
derlining the notion of “head to tail chains.” For ,u,*2=
simply the average value of the orientation grows with grow-
ing field. For ,u*2= 3 at the first six density minima between
the layers the average orientation goes more towards parallel
with respect to the surface (orthogonal to the field), when
increasing the surface charge. Seeing the whole distribution
py(z,cos0)/2p,(z) in Fig. 9 we learn that for the weaker
mutual interaction ,u*2= 2 everywhere the dipoles follow the
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FIG. 9. The angular distribution p,(z,cos60)/2p,(z) vs cosé for four dis-
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z=1.44 o. The surface charges are o*=0 (solid line), @*=0.0223 (long
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FIG. 10. The bulk dielectric constant €z decreases with increasing surface
charge w* due to saturation. The same is shown for the €. [Eq. (38)].

external field increasing their orientation towards cosf=1,
though much more strongly in the ‘“‘chain positions”
z=0.560 and 1440 (these z values are chosen from an
analogous plot in a simulation*’). For the stronger mutual
interaction ,u*2=3, the dipoles at z=0.960 and z=1.120,
which are no ““chain positions,” are obviously forced parallel
to the surface by the mutual interaction, even more so when
the “chain” alignment is increased going from w* =0.0223
to w*=0.0382 [see Fig. 9(c), ,u,*2=3]. This leads to the
deeper minima of (cos#) in Fig. 8 for ,u*2=

It is also of interest to use the notion of dielectric func-
tion €, because all previous double layer models have used
it. With a polarization P(z) we get the inner electric field
from the solution of Poisson’s equation
w—P(z) _ l Eex:L

E(z)= . (31)

€ € €€\

For the limiting values inside the liquid, we derive the bulk
dielectric constant €z from e,}lzeo (Eg/dw)=1—0dPg/
dw . Taking the derivative shows us a dependence of € on the
electric field or polarization. In Fig. 10 we demonstrate the
strong tendency to saturation of our orientational polarizabil-
ity. The value ez=21.25 for w*=0 is close to the simulation
result ez=16'" and e3=20 of another bulk integral equation
calculation***° for these model parameters. The small differ-
ence is due to inconsistencies introduced by the approxima-
tions.

Another path to the bulk dielectric constant ep is its
derivation from the local electric field within the cavity of
each dipole, which is calculated in Eq. (23) in order to de-
termine the potential energy of a dipole. When P(z) has
reached its constant limiting bulk value Py, Eq. (23) plus the
external field yields the local electric field

E} =L( —5Pp) (32)
loc € w—308) -
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Pp is related to the inner field E and the external field
Ey=¢, " according to

eg—1 ez—1
B €oFo= B

Pp=(eg—1)eE= . (33)

€p
We therefore can find €z from the relation between the
local field and the surface charge:

w
EB ——(1

loc ™

263_2 EB+2
€p -

363

@ 34
3eg \€y) - (34)
We get here the field according to Clausius—Mosotti, because
the medium is homogeneously polarized around the cavity in
Eq. (23). We determine €5 again from the derivative of Eq.

(34) because €5 is field dependent:

IEp. 1 ep+2

do € 3ep (33)

We find the same values for €z(w) as from Eq. (31) (cf. Fig.
10).

If we consider the capacitance of two electrodes with the
dipolar liquid in between, we get an information about the
average € in the whole boundary layer. Because also here €
depends on the external field, we evaluate the differential
capacitance

_1_ 9y
Cdlzw (36)

with the potential drop = (z=0)— 4(L) calculated from

L 1 L
IJ/(Z)IJ E(z)dZZE—O(w(L—Z)—f P(z')dz') (37)

and compare it with the capacitance C = €€, /L derived for a
plate condensator to obtain

. a (1L
Eoff — 1-— (9_(1) ZJO P(Z)dZ . (38)

The effective €4 obtained from Eq. (38) can be compared
with the bulk values €p for different surface charges in Fig.
10. The smaller values for the average e in the total capacitor
indicates that near the surface the polarizability is decreased
due to structural restrictions and to stronger saturation in
higher fields.

We have tried to come close to a local dielectric function
€(z) or polarizability x(z). This is not straightforward, be-
cause the inner field and the polarization show strong oscil-
lations and even change sign near the surface due to the point
dipole model. If we use the average polarization per layer

_ 1 (zto2

P(Z)Z—f P(z)dz (39)
TJz—a2

we get a smooth monotonous result. We therefore write

e(z)—1 e(z)—1

—G(Z) €oLext™ G(Z) (40)

P(z)=(e(z)—1)€E(z)=

and
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FIG. 11. The dielectric function per layer [Eq. (41)].

P e(z)—1 . aP
£Z)= 2 =€ (z)=1—%(z) (41)

which according to Eq. (38) could also be derived via a
concept of a sequence of capacitors. The e(z) from Eq. (41)
is plotted in Fig. 11 for different w*. We see that e(z) near
the surface is always lower than in the bulk. The dipoles are
oriented in a certain structure and cannot so easily follow the
field. The combination of orientation and change in density
of dipoles can even lead to a maximum in €(z).

V. DISTRIBUTION AND ORIENTATION OF IONS AND
DIPOLES NEAR THE PLANAR ELECTRODE

We now determine the densities p.(z),p_(z) for the
ions and p,(z,6) for the dipoles from Eqs. (16) and (17). We
expand p,(z,60) up to [=4 [see Eq. (12)]. The required direct
correlation functions c¢;;(r;;) are calculated in the RHNC ap-
proximation with expansions in spherical invariants up to
[=234" We choose ,u*2=2 and the total density
pr=pi+p*+p¥=0.7 in the bulk as in the previous sec-
tion.

The two new model parameters are the ionic charge and
concentration. We use a concentration of 0.1 molar (0.1 M)
typical for an electrolyte, which gives an ion concentration
c=(py+p_)pr=00036 and p*=p*=0.00126. Some
calculations for smaller concentrations are also presented.
The ionic charge = g determines the interactions and is mea-
sured by ¢**=¢>/(okT). We use g*=6 and g*=8. At
larger ionic interactions, the hard sphere ion-dipole mixture
becomes unstable with respect to demixing.'%* This is un-
fortunate, because ¢* =8 means only 0.57 of an elementary
charge for a hard sphere diameter of 0=2.8 A and tempera-
ture 7=300 K. If one does not like to face these limitations
of the model one can interpret the system as fully charged
jons at extremely large temperature.** Our bulk electrolyte is
chosen well in the stable region of the phase diagram. For
large external fields the concentration of ions near the elec-
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FIG. 12. The density profiles of the ions in the ion-dipole mixture near the
uncharged electrode for three concentrations.

trode is strongly enhanced and we finally see a behavior of
the ion distribution, which is probably due to this phase in-
stability.

A. The uncharged electrode

In Fig. 12 we show the ionic density profile p (z)/ pg for
both ion species at the uncharged electrode. The concentra-
tion 0.0 M means infinite dilution neglecting all ion-ion cor-
relations in Eqgs. (16) and (17). In spite of the low ionic
concentrations, we see here a density structure which is in-
troduced by the solvent molecules. If we treat the ions as a
gas in a homogeneous dielectric medium (primitive model),
the contact value is always very much higher than all other
densities'® and very little structure appears. Here the ions are
excluded from the first layer of the electrolyte, more so for
higher ion charge. We can understand this by a stable solva-
tion shell and/or by a repulsive image interaction of the
charge in the highly dielectric medium in front of the non-
polarizable region with e=1. The image repulsion makes
even the peaks in the second and third layer smaller than the
bulk density for g*=8 and 0.0 M.

Also the average ion density in each layer obtained from
Eq. (30) is much lower than in the bulk (Fig. 13). Another
effect dragging the ions to the interior is the reduction of the
ion chemical potential in the Debye—Huckel screening cloud,
which is fully developed only further away from the surface.
The dipole density near the surface slightly increases with
increasing ion concentration and ionic charge, compared to
the density of the pure dipoles. Obviously the solvation of
the ions disturbs the optimal arrangement of the dipoles, re-
duces their average mutual attraction, and increases the pres-
sure. Also the probability of orientation parallel to the sur-
face in the contact layer (see Fig. 3) is reduced proportional
to ion concentration and charge ¢g*, because the solvation of
ions which mainly are placed in the second layer around

9013
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FIG. 13. The ion density per layer near the uncharged wall.

1.50 (according to Fig. 12) will turn some dipoles normal to
the surface.

B. The charged electrode

In this section we present results for a 0.1 M concen-
trated electrolyte (p* =p*=0.001 26, c=p, +p_/p;=0.0036)
with total density p7 =0.7, dipole strength ,u,>k2 =2, and ionic
charges ¢*=6 and ¢*=38. The largest surface charges are
again in the range of high experimental charges. Because we
find some instability in the electrolyte with ¢* =28, which
limits us in finding convergent solutions, the extremal sur-
face charge is a bit smaller than for ¢g*=6.

In Fig. 14 we show the ion density per layer [Eq. (30)]
for the negative ions at the positive electrode. We see that the
solvation keeps the ions away from the first layer, more so
for the higher ionic charge, where the solvation is obviously
more stable.
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FIG. 14. The density of negative ions per layer near the positively charged
electrode for ion concentration 0.1 M.
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FIG. 15. The density of positive ions in the first three layers vs surface
charge for ion concentration 0.1 M.

It is also interesting to look at the density of positive
ions in Fig. 15. One expects a reduction with increasing sur-
face charge. Surprisingly this is not the case for the large
ionic interaction ¢*=28. Obviously more negative charges
enter the double layer than necessary for screening the field.
They partly drag their positive partners with them. The rea-
son might be the larger tendency towards pair formation for
higher ionic charges.

We can also show that the screening of the external field
for g*=8 is so efficient that beyond w®=0.04 the electric
field in the second and third layer decreases with growing
™, which brings part of the positive ions back. This cannot,
however, explain the increase of p* above the bulk value.

But after our experience with instabilities of the ion-
dipole mixture® %> we suspect that we see an indication of a
condensation of the ions on the surface. In the bulk, the
system shows an instability towards condensation of the ions
around concentrations of 1 molar.°? One can only say that the
electrolyte concentration is increased in the external field
near the surface. In order to analyze the situation further, we
look at the surface excess of the ions

Fa: fooc[pa(z) —pg]dz .

For a more drastic signal we take the derivative of I" with
respect to the electrode charge

orx

¥

!

(42)

with I'*=¢?T" and w*=wo?/q. Because of the screening

condition g(I'_—T" ;)= the I'’ has to fullfil the relation
ar*  gr*
do*  dw*

=1. (43)

The I'" are plotted in Fig. 16. For small external fields posi-
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FIG. 16. The surface excess I'* and its derivate I'* '
charge for the ions and the dipoles.

with respect to surface

tive and negative ions contribute equally to the screening
(I'" = %0.5), as the Debye—Huckel theory requires. Very
soon the screening is accomplished solely by the counterions
(F'_=1T".=0). But in the system with ¢*=8 and surface
charge density around w*=0.04 suddenly both numbers of
ions start growing in the surface region. In the plot of T'} for
the dipoles in Fig. 16 we indeed see that the trend of increas-
ing growth of dipole density for ¢* =8 is suddenly reversed.
When there is a condensation of the ions, the dipoles are
partially replaced by the ions. We understand the initial de-
crease of I'; for the small ion charge ¢g* =6 in the same way
as explained for the pure dipolar fluid in the field of the
surface charge. For the higher ion charge ¢* =8 this trend is
counterbalanced by the tendency of each ion to carry its sol-
vation shell into the double layer.

In addition to densities we get the information about the
dipole orientation and polarization in the double layer. The
order of the dipoles and related effects are smaller than for
the pure dipolar fluid as shown in Fig. 9, because the field is
strongly screened.

The overall result of all these distributions is the differ-
ential capacitance C, of the double layer

diy
-1 0
Ca'=" (44)
where = (y(z=0)— (o°) is the potential drop across the
double layer

1 (= L (=
%:_E_OJO 7 q(z) dZ_G_oJO P(z) dz. (45)

We compare our result for C, (see Fig. 17) with the
Gouy—Chapman values and an RPM evaluation. We use in
both cases a dielectric constant e= 19 determined in a RHNC
calculation for the bulk ion-dipole mixture with our
parameters.®! For a fair comparison also in these continuum
solvent models we have to leave an empty selvedge with
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FIG. 17. The differential capacitance.

€=1 between z=0 and z=o0/2 , because in our model with
hard sphere dipoles the polarization starts at z=o0/2. The
values for the microscopic model are larger than from RPM
and GC. In our model the dielectric response is not constant
throughout the double layer, but decreases near the wall. In
addition, the ionic packing is determined by the solvent
structure. In view of these facts, it is remarkable how large
the differential capacitance, how good the screening is com-
pared to the continuum models. The screening charge is
probably just dragged closer to the electrode, because the
electric field is less weakened due to the smaller dielectric
function near the surface.

For the electrolyte with ¢*=8 the differential capaci-
tance is suddenly steeply growing, which is related to the
suspected phase instability with respect to ion condensation
discussed in connection with Figs. 15 and 16. This is an
indication of a model case for such an irregularity in the
differential capacitance as recently again discussed by
Partenskii and Jordan.5> When there is an instability in the
ion distribution, it may happen that for a certain increase
Aw in the surface charge density there could be such a re-
distribution of the screening charge that the potential differ-
ence towards the bulk increases very little, as in our case, or
may even increase not at all (C,=%) or even decrease
(C4<0). Because not the amount of charge but its distribu-
tion determines the potential drop, there is nothing mysteri-
ous about this result. We will try to investigate this case in
more detail in the future.

VI. ELECTROSTRICTION

During discussions with J. P. Badiali and V. Russier we
were urged to also consider electrostriction for the pure di-
poles, where the field is not screened. Up to now we have
reported about calculations which used a constant given bulk
liquid density of p*=0.7 as a boundary condition. We think
that this assumption is justified for studying all the qualita-
tive features we have analyzed. Experimentally, this condi-

tion would be applicable to a completely closed parallel ca-
pacitor of very large area such that essentially all the
available liquid sees the same bulk field.

When a capacitor dives into a liquid, usually the liquid
in the field is connected to a bath of liquid without a field.
Then the liquid in the field increases its density with increas-
ing field because the field lowers the chemical potential of
the molecules, which then flow in from the bath. The in-
crease of the density can be estimated in the following way:

We start from the exact thermodynamic relation for the
chginical potential at the macroscopic inner field intensity
E:

Je

(T.E,p)=u(T0,p) eofba( ) dE> (46)
M ’ sp M ’ ’p 2 0 ap . .

de/ dp is positive and we approximate it independently of the
field by

(’9-2 1 * *k *k

ap* %[G(P +6p*)rp=0—€(p*)re=0l.  (47)
We calculated € for p*=0.7 and p*=0.701.

Because our system is coupled to the bath with
m(T0,pg), w(T,E,p)=u(T0,py), which is achieved by in-
creasing the density by Ap:

€| de N
/-L(T’O’po—i_Ap)_M(T’O’pO):? % E-. (48)

The following further approximations are used:

potApdu
/.L(T,O,p()"‘Ap)_/.L(T,O,pO):f &_dp
PO p
potApl 0
[,
po PP
1 dp
N(——) Ap (49)
pap,
0
with
ap BVZ((?p)
ap N \ 9V N
B[ 1av\T!
e\ Vp
1
pkT x
© -1
=|1+4m pfo dr r? hggo(r)) (50)
and
E, 0]
E (51)

€(po.Ey) € €(py.0)

Finally with reduced quantities Ap* is given by
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FIG. 18. Increase of the bulk density due to electrostriction.

62

Ap* 65&( w*

2
o2 5] i

€ €(py o o kT’

(52)

Our calculations yield de/dp* =74 and p kT x=0.067.

We have now calculated with the increased density
pEF(w*)=p*(0)+Ap*(w*) as the bulk limit. We first plot
in Fig. 18 the increase of p* as a function of the surface
charge density w*. We find an increase of p by 8.3% for the
largest fields used. At each z the density grows, but faster in
the first layer and less in the third and fourth layers than in

the bulk. This is shown in Fig. 19, where we plot Ap*:

— 1 (io
Ap*(i)=;f p*(z,0%) dz—pP*(w¥). (53)
i—1)o

Therefore the arguments from Sec. II about attraction in
the inhomogeneous field in the first layer and mutual repul-

sion of dipoles forced parallel in ordered layers are still ap-
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FIG. 19. The density changes in the first four layers [Eq. (53)]: with ()
and without (O) electrostriction.

plicable and give even larger effects for higher densities. The
surface excess I'*(w*), which is always negative, is not
much changed for the electrostriction case, when I' is calcu-
lated properly with respect to the bulk p*(w*). For the elec-
trolyte with ions there is no electrostriction because screen-
ing makes the field zero in the bulk.

VIl. CONCLUSIONS

For the electrolyte model of hard sphere ions and hard
sphere dipoles the particle distributions and orientations near
a planar electrode under bias conditions have been calculated
here for the first time by solving the integral equations with-
out linearization. We solve the Euler equations from density
functional theory, approximated to the HNC equivalent and
amended by a ““bridge function,” which is an effective repul-
sive potential of the electrode. The required particle—particle
correlations are taken from RHNC bulk calculations.

The calculated densities give the following insight into
the structure of the double layer. For the pure dipolar fluid
the density near the uncharged electrode is decreased, rela-
tive to the bulk liquid, because the dipole interactions are
attractive on average. When charging the electrode, the di-
poles are attracted in the first contact layer due to the large
field gradient. But in the third and fourth layer the density is
decreased so that the surface excess, which is already nega-
tive before charging, is actually decreasing. We understand
this unexpected result by the mutual repulsion of dipoles,
which are forced parallel by the external field. The apparent
chain structure is strengthened in the external field. The di-
electric function € (Fig. 11) is smaller near the surface than
in the bulk because the dipoles are obviously bound into a
structure and less free to respond to the field. For higher
external fields, e decreases everywhere due to onset of satu-
ration of the orientational polarizability. When the ions are
added, they are kept away from the electrode by solvation,
by image forces inside the dipolar liquid and by Debye—
Huckel attraction of the ions. The cohesion of the dipoles is
weakened, they increase their density near the electrode.
When the electrode is charged, the field is so strongly
screened that the density of coions behaves nonmonoto-
nously. The differential capacitance of this model with mi-
croscopic solvent structure is higher than that of the re-
stricted primitive model (RPM) or the Gouy-Chapman
result. The reason is better screening, a more densely packed
double layer due to stronger external fields at smaller dielec-
tric constants.

One additional feature of our model is its instability for
higher ionic charges and higher concentrations.®'*> We con-
sider this fact responsible for a ““condensation” effect of the
ions on to the surface at the highest surface charges, which
leads to a sudden increase of the differential capacitance.
This special property of our model, which simulates electro-
lytes with a demixing transition,> will be studied in more
detail in the future.
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