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ABSTRACT
In this work we calculate the potential of mean force for a discotic liquid crystal (DLC) confined in
a slab geometry. We have set the reaction coordinate as the distance between a DLC test particle
with a fixed orientation and a wall with face-on anchoring. Five different orientations of the DLC test
particle are explored, which correspond to parallel and perpendicular orientations with regard to
the anchoring promoted by the walls, and three intermediate orientations between the parallel and
perpendicular configurations. The potential of mean force reflects the strong effect of the system’s
anisotropy: particles with the wrong orientation are energetically penalised whilst the particles with
the correct orientation are favoured.
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1. Introduction

Liquid crystals (LC) are materials which are able to dis-
play mesophases, or intermediate phases between the
completely disordered isotropic liquid, where all posi-
tions and orientations are equivalent, and the more
ordered crystalline phase, where the particles formaperi-
odic arrangement. These mesophases are the dominant
factor in many of their unique characteristics, such as
their electronic, optical andmagnetic properties [1–4], or
their particular behaviour in !ow [5–7]. Among all these
properties of liquid crystals, many of them that could be
employed in the industry rely on e"ectively exploiting
their characteristic long range orientational order, and
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the possibility to change it at will using external #elds
[8–10].

The transition between di"erent mesophases may not
be necessarily connected through an easily accessible
phase space trajectory, since, ultimately, the di"erence
between those two stable states are determined by energy
barriers, which will have to be overcome in order to pass
from one state to the other. These energy barriers are
the result of a complicated interplay between the inter-
molecular forces and the external #elds involved. This is
also true for !uids under con#nement, where the walls
operate as an external #eld which promotes the strati#-
cation of the !uid near the walls, independently of the
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existence of attraction between the walls and the !uid
particles. In the case of liquid crystals, the interaction
between the !uid and the walls could promote preferen-
tial mesophases, by promoting a particular orientation
of the mesogens attached to the walls, a phenomena
called anchoring. Such orientation is transferred to the
rest of the !uid by intermolecular forces and produce an
inhomogenous region whose orientation is #xed by the
anchoring of the wall. As we move away from this region
the in!uence of the wall decreases and the system’s bulk
is recovered.

A walls’ anchoring can be obtained by various means,
such as photoallignment techniques [11], surface chem-
istry [12] and topographic patterning [13], only to name
a few. Three broad classes of anchorings can be used
to describe the type of alignment produced: planar,
homeotropic and tilted. In the planar case the director is
parallel to the surface, while in the homeotropic anchor-
ing the director lies normal to the surface, #nally, in
the tilted case, the director is tilted with respect to the
surface. When the liquid crystal is constituted by disc-
shapedmolecules or oblates, such as a liquid crystal com-
posed of triphenylene-core molecules, the homeotropic
anchoring results in the discs lying face-on on the surface,
while the planar anchoring results in the discs lying edge-
on on the surface. The face-on anchoring case, coupled
with the ability of the discotic liquid crystals (DLC) to
arrange themselves into columnar phases with a promis-
ing charge carrier mobility along the column, make the
face-on anchoring an interesting con#guration, since the
column’s growth should be normal to the walls and nano-
wires connecting both walls are expected.

One theoretical tool that has been extensively used to
determine the e"ect of an inhomogeneous !uid struc-
ture on the free energy landscape, is the potential of
mean force (PMF) [14–17]. The PMF allows to quan-
tify the change of free energy along one or more reaction
coordinates of interest, such as the distance between two
particles or the relative orientation between them, only to
name a few.Molecular simulations provide severalmeans
to calculate the PMF [18–20] for systems that are beyond
a purely theoretically description due to its complexity. In
the case of LC’s the relevance of its orientational order in
their use as detectors has resulted in the common prac-
tice of calculation of the PMF between colloids and or
wall immersed in a LC host. To the best of our knowl-
edge, this methodology has not been previously used to
characterise the changes in free energy of the LC itself,
althoug it has been used in the case of an isotropic !uid
in order to quantify the change of free energy of a !uid’s
molecule adsorbed [15].

In this work we present a detailed description of the
potential of mean force arising in a system of discotic

liquid crystals con#ned by two parallel walls (slab geom-
etry) which promote a face-on anchoring. We calculate
the potential of mean force for a test particle with di"er-
ent #xed orientations, as function to the distance to the
wall.

The paper is structured as follows: Section 2 presents
the model used to mathematically describe our system
while Section 3 contains the details of the molecular sim-
ulation employed. In Section 4 we present the results
and the discussion. Finally, the concluding remarks are
included in Section 5.

2. Model description and working equations

2.1. Disc-disc and disc-wall interaction

The system consists of a discotic liquid crystal con#ned in
a rectangular slab of constant volume, where the distance
between the walls is denoted by Lz. The particle-particle
[21] and wall-particle [22] interactions are de#ned by a
Gay-Berne pair potential, whose equations and param-
eters have been fully speci#ed in a previous work [23].
Nevertheless, here we include some basic equations for
the bene#t of the reader. The particle-particle interaction
is de#ned as:

U(ûi, ûj, r̂ij) = 4ε(ûi, ûj, r̂ij)("−12
ij − "−6

ij ), (1)

where r̂ij = rij/rij is the unit vector connecting the cen-
tres of particles i and j, ûi,j is the unit vector along the
principal axes of discs i, j, and ε is a strength anisotropy
function. Finally, " is an anisotropy function which
determines the distance between two mesogens.

Following previous works [23] and using the nota-
tion proposed by Bates and Luckhurst [24], in this study
we have used the parametrisation GB(0.345, 0.2, 1.0,
2.0). This set of parameters promotes the formation of
columns of discs, since the strongest attraction between
mesogens happens when they approach with their axis
parallel to each other and to the vector that connects their
centres.

The potential used for the wall-disc interaction has the
form:

V(z, θ) = εw

[
2
15

(
σ"

z − zshift(θ)

)9
−

(
σ"

z − zshift(θ)

)3
]

× [1 + AP2(cos(θ))] ,
(2)

where P2(x) = 1
2 (3x

2 − 1) is the second-order Legen-
dre polynomial, zshift is a function which determines the
wall-disc contact distance, and εw is parameter which
determines the strength of the anchoring. Finally, the
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Figure 1. Wall-disc interaction potential as given by Equation (2)
with the parameters set in this study. The red line corresponds to
a particle in a edge-on configuration (θ = π/2) approaching to
a wall promoting a face-on anchoring (A = 1.0), while the blue
line corresponds to a particle in a face-on configuration (θ = 0)
approaching to awall promotinga face-onanchoring (A = −0.5).

parameterA determines the type of anchoring. For exam-
ple, A = −0.5 promotes a planar or edge-on anchor-
ing, while A = 1 encourages an homeotropic or face-on
anchoring, as depicted in Figure 1 where we plot V(z, θ)

as a function of z, the distance of the particle to the wall.
In this work, we set A = 1 (face-on anchoring) and εw =
10 for all cases. This value of εw corresponds to a con#gu-
ration within typical experimental setups (the interested
reader may consult Ref. [23], which contains a section
with the speci#c values obtained when translating the
reduced unit parameters).

2.2. Potential of mean force

The free energy di"erence &W between two thermody-
namic states can be obtained by [25]

W(λ2) − W(λ1) =
∫ λ2

λ1

dλ′
〈
∂H
∂λ′

〉
, (3)

where the brackets denote the statistical average over the
equilibrium ensemeble corresponding to the parameter
value λ′ and H = H(r, p; λ) is the Hamiltonian of the
system; minus the integral, this quantity is equal to the
potential of the mean force, so the potential of the mean
force (PMF) provides a measure of the e"ective di"er-
ence in free energy between two thermodynamic states,
as a function of one or several degrees of freedom [14].
In our case, we calculate the potential of the mean force
as the work done on a test particle on going from the
centre of the box to a given distance zf , varying only the
z-coordinate of the particle. In other words, we set the
distance z as the reaction coordinate.

3. Simulation details

Molecular Dynamics simulations have been carried out
on an NVT ensemble for 5000 particles inside of a
rectangular box. The simulation box presents periodic
boundary conditions along the x and y directions and is
limited along the z axis by two walls which promote a
homeotropic, or face-on anchoring. In this simulations
the Nosé–Hoover thermostat [26] was used to held #xed
the temperature of the system. The thermostat constant
was set at Qt = 10.

We have used σ0 and ε0 as length and energy units,
respectively, and standard reduced units (T∗ = kBT/ε0,
P∗ = Pσ 3

0 /ε0 and ρ∗ = ρσ 3
0 , where kB stands for the

Boltzmann constant) for the rest of the system parame-
ters. Equations of translational and orientational dynam-
ics were integrated using the velocity-Verlet algorithm
[26] with a reduced time step of δt = δt(σ 2

0m/ε0)
−1/2 =

0.0015 (wherem = 1).
Simulations on an ensembleNPxyT systemwere run at

T∗ = 3, and forP∗
xx = P∗

yy = 25. These parameters corre-
spond to conditions where the con#ned !uid presents an
isotropic bulk phase [23] and, hence, were used in order
to obtain initial equilibrium con#gurations. In this case,
the thermostat constant was set at Qt = 10, while the
barostat constant used was Qp = 1000. The system was
simulated for 1 × 107 timesteps. The equilibrium den-
sity with the corresponding x−y area of the cell obtained
from theNPxyT ensemble run,was used as the initial state
for the NV T simulations.

The parameters used in this work can be compared
with experimental data by the use of reasonable esti-
mates. For example, assuming room temperature, then
ε0 % 1.37 × 10−21. Such energy value allows us to esti-
mate the anchoring energy, since the adsorption energy
per particle, de#ned by the minimum of the wall-disc
potential. According to Figure 1, for the face-on case,
EA % 15ε0. In order to transform the surface energy den-
sity, the area of a nematogen in contact with a wall is
approximately A = πσ 2

0 /4 and considering a value of
σ0 = 40 Angstroms which corresponds to the diame-
ter of a triphenylene-based molecule [27], results on a
surface energy density of 3.6 × 10−3 Joules/m2, which
is close to the highest experimental measured anchor-
ing energy, where the experimental values range from
10−6 J/m2 to 10−3 J/m2 [28, 29]. Another useful esti-
mate is the size of the cells, which corresponds to Lz =
25σ0 = 100 nm. This value is also near to the experimen-
tal values for con#ned liquid crystals, which range from
con#nement lengths of 10– 200 nm [30, 31].

In order to calculate the potential of mean force, sev-
eral runs were made where a DLC test particle (tp) is
maintained with a #xed position −→r tp and orientation êtp
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Figure 2. A schematic view of a test particle near a wall promoting a homeotropic anchoring. In (a) the mesogen’s orientation corre-
sponds to the orientation promoted by the walls, and in (b) the mesogen’s orientation is perpendicular to the orientation promoted by
the walls. For the sake of clarity, only the test particle and the first layer adjacent to the wall are shown.

(see Figure 2, where a schematic view of two test meso-
gens near a wall is shown), while interacting with the
rest of the system. This is, the orientational and posi-
tional dynamics for the rest of themesogens still consider
the test particle. The test particle is used to measure the
force felt in the z direction (Fz) by the mesogen due to
the rest of the system. At a particular distance away from
the wall ztp, 〈Fz(ztp)〉 is obtained from runs of at least
1 × 106 timesteps. Di"erent simulation runs for di"er-
ent distances ztp, allowed us to obtain the change of free
energy by numerical integration. We used two di"erent
orientations for a given position: one with the axis of the
particle parallel to a wall (equivalent to the order induced
by the edge-on anchoring) and one with the axis perpen-
dicular to the wall (equivalent to the order induced by
the face-on anchoring). An additional ensemble average
was calculated by randomly positioning 25 test parti-
cles at the same distance ztp from the wall, and with the
same #xed orientation. Each of the 25 test-particle runs
corresponded to an independent simulation box.

The positions ztp that determined the complete trajec-
tory to be integrated, started near the centre of the box
(z∗ ≈ 11) and ended at a short distance from the wall.
The minimum wall-mesogen distance where 〈Fz(ztp)〉
was measured depends on the orientation of the test par-
ticle (the centre ofmass of a face-on particle can approach
closer to the wall than the centre of mass of the edge-on
particle).

4. Results and discussion

In the following, results from simulations are presented:
#rst, showing the results of characterising the structure of
the !uid at equilibrium and then the results for the poten-
tial of mean force. We have analysed three main scenar-
ios: (a) when the orientation of the test particle is parallel
to the orientation promoted by the walls, (b) when it is
perpendicular to the orientation promoted by the walls,
and (c) three di"erent intermediate orientations between

case (a) and case (b). In all cases we have set the distance
from the wall as the reaction coordinate.

Con#ning a !uid results in a strati#cation of such !uid
near the wall. In this case, two useful quantities for the
structural characterisation of the system are the density
and order parameter pro#les. Given the symmetry of the
system we calculated this quantities in the z∗ direction.
For the density, we have used the expression ρ∗(z) =
Nz/(Axy dz), whereNz is the number of particles in a slab
parallel to the wall, Axy is the area of the box in the x−y
plane and dz is the width of the bin, which in this case
was #xed at 0.05σ0. For the orientational order param-
eter S, we calculated S via the largest eigenvalue of the
orientational tensor [32]:

Q = 1
2N

N∑

i=1
(3ûi

⊗
ûi − I), (4)

where
⊗

denotes the tensor product, I corresponds to
the identity matrix, andN is the total number of particles
contained in the system. The normalised eigenvector cor-
responding toλmax is the systemdirectorn, and S = λmax
is referred to as the orientational order parameter.

Figure 3 shows the results of the density and order
parameter pro#les obtained for this con#ned system. The
interface, or the region between the bulk and the wall,
presents ordered layers that are densely packed and with
an order parameter greater than zero. As onemoves away
from the walls, such in!uence vanishes and the bulk of
the !uid is recovered. At this temperature the system’s
bulk is at the isotropic phase. The interface between the
LC !uid and the wall, which posses orientational and
positional order, will mainly shape the free energy land-
scape for a mesogen approaching a wall. Notice that the
width of the inhomogeneity described by the two pro-
#les is rather di"erent: the density pro#le levels-o" at
z∗ ≈ 1.5, while the order parameter levels-o" at z∗ ≈ 4.5.
This is an adequate behaviour of the Gay–Berne model:
in a real con#ned liquid crystal system, the orientational
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Figure 3. Snapshot of the DLC system studied at T∗ = 3, and
their correspondingdensity (upper) andorder parameter (middle)
profiles as a function of z∗.

order promoted via the anchoring of the walls extends
farther than the positional order [33].

Further characterisation of the !uid interface can be
obtained by the quasi-two-dimensional positional corre-
lation function:

g(rxy) =
N(rxy)

2πrxy drxy
, (5)

where rxy stands for the xy projection of the distance
between two particles, 2πrxy drxy stands for the area of
a cell parallel to the wall of thickness drxy, and N(rxy)
is the number of particles inside this cell. We have cal-
culated g(rxy) within planar regions parallel to the wall
and considering particles inside slabs of width of 0.4.
Figure 4 includes the results for this pair correlation func-
tion calculated at four di"erent distances from the walls:
z∗ = 0.35 (black lines), 0.7 (red lines), 1.2 (green lines)
and 1.5 (blue lines). Notice that the shape of the curve
for the four layers is similar, although more pronounced
peaks can be distinguished for layers that are closer to the
wall. Only at the adjacent regions of the walls, the strati-
#cation of DLC presents a g(rxy) with a second and third
peak.

At this point we will turn our attention to the process
of calculating the potential of mean force. First we will
describe the results obtained for the average force felt by
a test particle and then we will discuss the results for the

Figure 4. Quasi-two-dimensional pair correlation function (gT =
g(rxy)) calculated at four different slabs near a wall: z∗ = 0.35
(black line), 0.7 (red line), 1.2 (green line) and 1.5 (blue line).

Figure 5. Average force in the z∗ direction that the system exerts
on the test particle as a function of the distance to the wall. The
black line corresponds to the case where the test particle (tp) has
an orientation vector êtp = (0, 0, 1), while the red line stands for a
test particle with êtp = (1, 0, 0). The values reported correspond
to an average over 25 different random x−y positions, and a time
average over 106 simulation timesteps.

potential ofmean force. Figure 5 shows the average forces
in the z-direction that a test particle feels due to the rest of
the !uid and the walls. The black line corresponds to the
case where the test particle is aligned with the direction
promoted by the anchoring, while the red line represents
the case where the test particle lies perpendicular to the
walls. In the #rst case, the unitary direction vector cor-
responds to êtp = (0, 0, 1), while in the latter this vector
corresponds to êtp = (1, 0, 0). Notice that in the central
part of the box the test particle, in both cases, feels no net
force and only presents small !uctuations. This is to be
expected: at the central part of the box the system’s bulk
presents an isotropic phase, where both, the position and
orientation of the mesogens are completely random. In
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such symmetric state all orientations are equivalent and
the mesogens can explore freely positions and orienta-
tions without an e"ective opposition from the rest of the
!uid.

When the test particle is closer to the more ordered
slabs near the wall, the value of the average force is no
longer zero. Let us discuss#rst the casewhere the test par-
ticle is ‘wrongly’ oriented. The red line in Figure 5, which
corresponds to the case of the test particle with êtp =
(1, 0, 0), presents mainly positive values and globally
decreases with z∗: at 1.5 ≤ z∗ ≤ 4, which corresponds to
the inhomogeneous region depicted by the order param-
eter pro#le (Figure 3), the value of 〈Fz〉 monotonically
decreases until it levels o" to zero at the bulk region.
At 0.5 ≤ z∗ ≤ 1.5, the average forces presents oscillations
due to the interaction with the layers formed near the
wall, but with 〈Fz〉 > 0. The fact that 〈Fz〉 is positive,
corresponds to a net push towards the centre of the cell.

In the case of the test particle aligned with the direc-
tion promoted by the anchoring of the wall, the scenario
is di"erent at the interface: for 1.5 ≤ z∗ ≤ 4 the value of
〈Fz〉 is negative and it increases until it levels o" to the
value of zero at the bulk. For 0.24 ≤ z∗ ≤ 1.5 it oscil-
lates due to the interaction with the layers formed near
thewall, alternating betweenpositive andnegative values.
In this case, the average force presents its negative values
at positions which practically coincide with the centres
of the ordered slabs near the wall (z∗ ≈ 0.345, 0.7, 1.2).
Hence, a negative force at this three regions re!ects a net
pull to the wall felt by the test particle. On the other hand,
the positive value of Fz appears as soon as the test particle
moves away from these layers and towards the wall. The
positive sign is still the result of the attraction from an
ordered column, but now pulling the test particle in the
opposite direction. To summarise: in all cases there is an
e"ective attraction felt by the test particle from these lay-
ers, but the sign of the average force changes depending
on the position of the test particle.

Numerical integration of the mean force results in the
potential of mean force. We have calculated such inte-
gral and averaged the PMF obtained for the 25 di"erent
samples. In Figure 6 we present these results: the black
line corresponds to the PMF calculated for the test parti-
cles with the ‘right’ orientation (êtp = (0, 0, 1)). The red
line corresponds to the values of the PMF obtained for a
test particle with the ‘wrong’ orientation (êtp = (1, 0, 0)).
The value of the PMF for a given position z∗

i , represents
the change of the Helmholtz energy between two states:
the initial state where a particle with a #xed orientation
is located at z∗ = 11, and the #nal state where the same
particle keeps its orientation at position z∗

i .
The PMF shows no dependence in the x−y coordi-

nates but only on the distance to the wall. This is to be

Figure 6. Potential of mean force. The black line corresponds to
the case where the test particle (tp) has an orientation vector
êtp = (0, 0, 1), while the red line stands for a test particle with
êtp = (1, 0, 0). The values reported correspond to an average over
25 different random x−y positions, and a time average over 106

simulation timesteps.

expected: as it is depicted in Figure 4, inside the layers
formed at the interface (which are parallel to the wall) the
radial distribution function g(rxy) behaves as a !uid, this
is, there is no intra-layer positional order at the interface.

Notice that the inclusion of a test particle produces a
perturbation on the density and order parameter of the
!uid particles around it, especially for a test particle with
the ‘wrong’ orientation. This has an important contri-
bution in the calculation of the PMF which is primarily
due to the !uid particles near the test one. On the other
hand, an increase in the x−y cross sectional area will
only add a small contribution on the PMF arising from
!uid particles that are far from the test particle and where
the perturbation has been washed out. Nonetheless, a
su$ciently large simulation box (with a large x−y cross
sectional area) is needed tominimise #nite-size e"ects, as
usual in simulations using periodic boundary conditions.
To obtain a practical minimum size where these #nite-
size e"ects are important is not straightforward since it
will depend on the parameters of the system like cell
thickness, density, and others. We have chosen the num-
ber of simulation particles N = 5000 (and thus of the
x−y cross sectional area for the given cell thickness) to
ensure that #nite-size e"ects are negligible.

With regard to the behaviour of the PMF across the
entire cell, we will again discuss #rst the results for the
‘wrongly’ oriented test-particle (red line in Figure 6).
Although there are small !uctuations observed, overall,
the PMF behaves as a decreasing function of z∗.

The PMF obtained with the test particle ‘rightly’ ori-
ented overall behaves as an increasing function of z∗. At
the interface, the PMF presents three di"erent minima
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Figure 7. Histogram with the relative time spent on a given z∗

position for two particles with fixed orientations: blue line corre-
sponds to a particle with êtp = (0, 0, 1), while the red line corre-
sponds to a particle with êtp = (1, 0, 0). The histograms have a
normalised area of 1.

around z∗ ≈ 0.345, 0.7, 1.2. The global minimum of the
function is around z∗ ≈ 0.345, while the two other val-
ues correspond to local minima; the depth of the three
minima increases as they are closer to the wall. This
means that a particle which is aligned with the anchor-
ing promoted by the wall, will be e"ectively attracted to
the wall, promoting the adsorption of particles with this
orientation.

In order to gain further insight on the role that a par-
ticle’s orientation has on its dynamics, we have calculated
an histogram with the relative time that a particle, with
a #xed orientation, spends in a given z-region of the cell.
The histogram shown in Figure 7 was obtained by per-
forming NV T simulations for 1 × 107 timesteps of 5000
particles, and by normalising the value of its area. For this
simulations, among the discs, a particle is includedwhich
interacts with the rest of the !uid and is able to translate
according to the dynamical equations but is not able to
rotate. The blue line in Figure 7 summarises the result for

a particle with êtp = (0, 0, 1), and the red line stands for
a particle with êtp = (1, 0, 0).

According to the histogram, a particle whose direc-
tion is êtp = (0, 0, 1) (blue rectangles), will visit often
the region where the PMF presents its global minimum
and will spent most of its time at the interface. On the
other hand, the histogram obtained for the particle with
êtp = (1, 0, 0), shows that the interface is practically a for-
bidden region for a disc with this orientation. This is in
agreement with the results obtained with the PMF.

Up to now we have only considered two main ori-
entations of the mesogens. A natural question arises
about the behaviour of particles with intermediate ori-
entations. Hence, we calculated the PMF for test par-
ticles whose orientation is intermediate between êtp =
(1, 0, 0) and (0, 0, 1). We have speci#cally considered the
orientation vectors: (

√
3
2 , 0, 12 ), (

1√
2
, 0, 1√

2
) and ( 12 , 0,

√
3
2 ),

which correspond to rotations of 30, 45 and 60 degrees
going from (1, 0, 0) to (0, 0, 1). Figure 8 includes the
results of the average force obtained with these test parti-
cles and their corresponding PMF. The orange line stands
for the PMFwhere the test particle has been rotated by 30
degrees from (1, 0, 0), the cyan line represents a particle
rotated by 45 degrees, and, #nally, the blue line stands for
the 60 degrees rotation.

The average force obtained for êtp = (
√
3
2 , 0, 12 ) is

depicted in orange in Figure 8(a). Note the similitude
with the dashed red line which stands for the êtp =
(1, 0, 0) case, at least in the region where z∗ ≥ 0.75. At
distances closer to the wall, the force presents a global
minimum at z∗ ≈ 0.5, and then grows due to the repul-
sive interaction with the wall. This is interesting, since a
disc which is slightly rotated from the orientation (1, 0, 0)
could #nd at least one region inside the interface where
it is e"ectively attracted to the corresponding wall. This
information is more clearly presented by the PMF. The

Figure 8. (a) 〈Fz〉 profile obtained for five different orientations: dashed red line corresponds to a particle with an edge-on orientation,
while the dashed black line corresponds to the face-on orientation. The orange, cyan and blue lines correspond to intermediate orienta-
tions between the latter two cases, specifically: 30, 45 and 60 degrees going from the edge-on orientation into the face-on, respectively.
(b) Potential of mean force obtained for the same five cases depicted in (a) and with the same colour code.
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orange line in Figure 8(b) shows that for z∗ ≥ 0.75 this
PMF is a decreasing function of z∗. The other curves
show similar behaviour.

5. Conclusions

In this study we have quanti#ed the orientational depen-
dence of the energy landscape for a system of DLC
particles, con#ned between two walls promoting a face-
on anchoring. We have speci#cally studied two limiting
cases where êtp = (0, 0, 1) and êtp = (1, 0, 0), in other
words, orientations of the test particle which are par-
allel and perpendicular to the anchoring of the wall,
respectively. Also, three intermediate cases were explored
where the test particle has êtp = (

√
3
2 , 0, 12 ), ( 1√

2
, 0, 1√

2
)

and ( 12 , 0,
√
3
2 ).

Interestingly, our results show that the PMF extends
further than the wall-disc potential due to the preferred
orientation of the !uid promoted by the wall. In the
face-on case (êtp = (0, 0, 1)) the PMF depicts an e"ective
attractive interaction, with three di"erent local minima
due to the layers of the inhomogeneous region near the
wall. These positions of local minima coincide with the
positions where the density presents their local maxima,
meaning that a particle inside the structured !uid will
be attracted by these !uid layers. Nevertheless, the global
minimum of the PMF is located adjacent to the wall and,
hence, anymesogen oriented according to the orientation
imposed by the anchoring of the wall, will feel an e"ective
attraction towards the wall.

As the orientation of the test particle diverts from
the face-on case and approaches to an edge-on orien-
tation, the minima of the PMF move farther from the
wall and become shallower. Finally, in the edge-on case
(êtp = (1, 0, 0)) the PMF is purely repulsive and decreases
monotonically as a function of the distance to the wall.
This happens in contrast to the behaviour of the wall-disc
potential which, independently of the particle’s orienta-
tion, always contains an attractive term (see Figure 1).

Calculations such as those carried out in this work
could be useful, for example, to obtain anisotropic e"ec-
tive surface potentials, that in turn could be used in
density functional theory.

Eventhough there are other simulation techniques for
calculating the PMFwith high resolution [14, 34, 35], the
method used in this study is convenient given that the
calculation of the forces over all the !uid particles is an
intrinsic part of the MD algorithm.
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