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ABSTRACT
Constant chemical potential, pressure and temperature profiles across a slab of liquid in equilibrium
with its vapour confirm that, the spinodal decomposition procedure carried on the NVT ensemble
simulated via molecular dynamics produce an equilibrium system. An initial homogeneous crys-
talline configuration of fluid is kept in a cell with a parallelepiped shape at a density near the critical
density and a temperature between the triple and critical temperatures, form a slab of liquid in equi-
librium with its vapour by the spinodal decomposition phenomenon if the simulation is performed
in the NVT ensemble. An elongated box favours the formation of two planar parallel surfaces along
the largest side of the box.We show in this paper that the ‘three conditions’ for thermodynamic equi-
librium: constant temperature, constant pressure and constant chemical potential are met for such
a system.
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1. Introduction

There have been several approaches to analyse the
liquid–vapour equilibrium (LVE) of a !uid interacting
with an attractive potential such as the Lennard–Jones
(LJ) or the Square Well (SW) potentials via molecular
simulation. Hansen and Verlet [1], in 1969, were the "rst
to calculate the LVE of a LJ !uid using a constrained
Monte Carlo (MC) method. In the next decade, the "rst
attempt to calculate the interphase, the orthobaric curve
and the surface tension via molecular simulation was
made by John Rowlinson’s group in 1975–1977 [2,3].
They used MC and molecular dynamics (MD) on an
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elongated box closed in the twomost separated sides sim-
ulated in the NVT ensemble. This approach was further
re"ned in 1987, using the spinodal decomposition (SD)
phenomenon by Chapela et al. [4], which uses also an
elongated box simulated in theNVT ensemble, but in this
case, it is open in all dimensions. Rao et al. [5,6] were the
"rst to calculate the pressure pro"les (the tangential and
the normal) for a planar interphase of an LJ !uid with a
cuto# of 2.5 diameters. They concluded that the position
of the surface tension was located at a distance of 0.04
diameters from the Gibbs dividing surface. Adams, in
1979, [7] obtained results for the LVEwith a grand canon-
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2 E. DÍAZ-HERRERA ET AL.

ical MC technique (GCMC), and Nicolas et al. [8] man-
aged to obtained the same results via an equation of state
for the whole region. In 1987, a breakthrough occurred
when Panagiotopoulus [9] proposed his seminal method
of the Gibbs ensemble MC technique (GEMC). It has
become one of the most popular and useful methods
to obtain LVE properties. Lofti et al. [10] in 1990 put
forward a method which combines an NpT MC simu-
lation with a Widom [11] particle insertion procedure
to get the LVE quantities. Even though it is not directly
related to the topic of LVE calculation, the contribution
of the method of "nite size scaling in 1992 by Wild-
ing et al. [12], which is used to accurately calculate the
critical point of a !uid, deserves a mention. The Gibbs-
Duhem integration, introduced by Kofke [13] in 1993 is
also an important contribution which combines a molec-
ular simulation, normally MC in the NVT ensemble, and
a thermodynamic integration using the Gibbs-Duhem
equation. The surface tension of a LVE was calculated
with an area sampling MC or MD, introduced by Gloor
et al. [14] in 2005. This Introduction gives a tight account
of the development of the procedures employed in the
calculation to obtain the LVE of a pure !uid. For a com-
prehensive review on the calculation of surface tension
via molecular simulation, see Ghou" et al. [15].

The method that will be used in this work if the
SD procedure with an elongated box [4] with periodic
boundary conditions in all directions simulated in the
NVT ensemble. The initial con"guration is usually an
homogeneous crystal at a density near the critical and a
temperature between the critical and the triple point tem-
peratures. The SD produces a slab of liquid which is pre-
sumed to be in equilibrium with its vapour. This choice
of initial global density promotes, according toMaxwell’s
lever rule, the formation of equivalent quantities of liq-
uid and vapour, providing two very well de"ned liquid
interphases due to the imposed periodic conditions. Even
though the SD method has been reported having signi"-
cant drawbacks [16] it has been used inmany calculations
on the surface properties of LVE [17–19] to cite only a
few. As an example of this comments, here is a quote
taken from a paper by Vega et al. [16] where they report
the VLE of the SW !uid in three dimensions using a
GEMC procedure. They refer to papers by Chapela et al.
[4] and Benavides et al. [17]:

However, these types of direct simulation studies of
phase equilibria possess signi"cant drawbacks because
the method is restricted to a "lm of liquid con"ned
between parallel plates. Unless the size of the system is
very large the con"nement causes the coexistence prop-
erties of the !uid to be di#erent from the bulk coexis-
tence properties of interest. In fact, the method breaks
down altogether for temperatures close to the critical
point.

The initial procedure used a closed box but the version
based on the SD phenomena [4] used an open elon-
gated box. Also one could add that all methods break
down near the critical point exception made of the "nite
size scaling of Wilding et al. [12], which was properly
designed to be used in the vicinity of the critical point.
This is a property of the critical point rather than a draw-
back of any method. Another characteristic of the SD
method is that an explicit density pro"le is provided by
the simulation. In fact two liquid–vapour interphases are
formed, in contrast with most other methods that do not
provide one, for example, see Sing et al. [20].

The comment in print [16] and others made to us ver-
bally by colleges, in terms that the system is not proven to
be in equilibrium, prompted us to try and test the equilib-
rium property of the SD method. In order to do this, we
calculated the temperature, pressure and chemical poten-
tial pro"les of the LJ and SW !uids, which by the way,
is the only method that gives the liquid and the coex-
isting vapour, forming a planar interphase. Previously,
Trokhymchuk and Alejandre [18] reported the pressure
pro"les for the LJ !uid with several cut o# distances of
the potential calculated with Monte Carlo and molecular
dynamics methods, establishing the unequivocal con-
dition of mechanical equilibrium of the systems. Imre
et al. [19] used the SD method checked thermal equilib-
rium with the temperature pro"le but they do not show
it. No chemical potential pro"les have been found.

Themain aim of this work is to show that the SD tech-
nique produces an equilibrated liquid–vapour system. To
do it we propose to calculate the temperature, pressure
and chemical potential pro"les across the interphase and
show that they are horizontal lines, except across the two
interphases in the system.

The work is organised as follows. After Section 1,
Section 2 describes the LJ and the SW potentials.
Section 3 describes the Methods used: the Widom test
particle, the SD procedure and the NVT MD simulation
follow. Section 4 explains how the temperature, pressure
and chemical potential pro"les are calculated is given
next and Sections 5 and 6 and 7describeResults andCon-
clusions, respectively, which close the work. The Results
section makes special emphasis in the comparison of the
results of LJ and SW systems.

2. Interactionmodels

We used the LJ Equation (1) and the SW Equation (3)
potentials to test the hypothesis of the system being in
equilibrium. These two potentials are the simplest and
the most used attractive potentials. Figure 1 shows a
pictorial representation of both.
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Figure 1. LJ and SW interaction potentials.

The truncated and shifted LJ potential uLJ(r) is:

uLJ(r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
(1)

with:

uLJTS(r) =
{
uLJ(r) − uLJ(rc) if r ≤ rc
0 if r > rc

(2)

and the SW potential uSW(r) is given by:

uSW(r) =






∞ if r ≤ σ

−ε if σ < r ≤ λ

0 if r > λ

(3)

For the rest of the work when we refer to the LJ potential,
it means the truncated and shifted LJ potential. Where
r is the dimensionless distance and σ and ε are the dis-
tance and energy constants of the potentials. Standard
dimensionless units in terms of the parameters σ and ε

for distance and energy are used throughout the work.

3. Methods

There are at least eight methods to calculate LVE proper-
ties. In this work, we focus our attention in the SD pro-
cedure [4] performed in an open elongated simulation
box with periodic boundary conditions in all directions
to obtain a liquid slab in equilibrium with its vapour, at
temperatures between the critical and the triple point. As

the main aim of this work is to show that this method
brings a system to thermodynamic equilibrium if su$-
cient time is allowed in the simulation, the particle inser-
tion method devised by Widom [11] is used to calculate
the chemical potential pro"le which is described in detail
in the next section. The NVT ensemble MD simulation
is also described for both versions, the continuous one
by Verlet [21] and the molecular dynamics of discontin-
uous potentials (MDDP) version put forward by Alder
et al. [22], modi"ed by Rapaport [23] and extended to
molecules and mixtures by Chapela et al. [24]

3.1. Widomparticle insertionmethod

Ben Widom [11] devised his particle insertion method
to calculate the chemical potential in 1963. It consists in
inserting a particle in the !uid and obtaining its poten-
tial energy, the sum of all the interaction energies of
the inserted particles with the rest of the !uid is used
to evaluate the work needed to insert such a particle.
The chemical potential µ at a temperature T and density
ρ = N/V , is then the work needed to insert such particle
given as:

µ/kbT = − ln
〈
V exp(−βφ)

〉
/N (4)

where φ is the total potential energy of the inserted par-
ticle and the brackets represent the ensemble average in
the isobaric-isothermal ensemble. The number of parti-
cles and the volume areN andV, respectively. The symbol
β = 1/kbT with kb being the Boltzmann’s constant. This
method was applied to the resulting con"gurations after
a lengthy enough period of equilibration, (typically of
100 000 time steps for the LJ !uid and 10 million colli-
sions for the SW !uid) 1000 insertions in each slab were
tried for each of a 5000 con"gurations taken at least 5000
time steps apart for LJ and, 4000 insertions in each slab on
1225 con"gurations of 4 million collisions each for SW.

3.2. Spinodal decompositionmethod

The SP method [4] is normally conducted in an NVT
ensemble starting with some crystalline initial con"g-
uration at a density close to the critical density of the
!uid to be studied and a temperature between the crit-
ical and triple point temperatures. The SD is performed
in an elongated simulation box with periodical bound-
aries in all directions. The initial positions of the atoms
are given as a crystalline array. A slab of liquid is formed
in the cell with both planar interphases being perpendic-
ular to the longest side of the box. The initial density close
to the critical is "xed to insure a proper formation of a
liquid slab at the desired temperature. It is known that
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away from the critical density spheres or cylinders can be
formed [25,26]. The SD phenomenon occurs in a matter
of 1 to 2 pico seconds [4,27]. This is equivalent to 10,000
time steps for LJ and 100,000 collisions for SW. After this
initial SD period, an equilibration period was allowed as
mentioned in the previous Section.

3.3. Molecular dynamics in the NVT ensemble

This is a usual procedure whose description can
be obtained readily elsewhere for the velocity Verlet
algorithm [21] and for theMDDP [22–24]. An FCC array
at the proper density and temperature is used as initial
condition. After an appropriate period of SD simulation
and an equilibration period of length mentioned above
are allowed, a total size of the simulations was of around
0.5 million time steps for LJ and at least 10 blocks of 4
million collisions for the SW runs.

4. Calculated properties

Temperature, pressure and chemical potential pro"les are
the main calculated properties in this work. In order to
obtain a pro"le, the box in the largest direction is divided
into small slices of 0.1σ (0.05σ for the case of the LJ
potential) and the corresponding property is calculated
for that slice.

Temperature T is obtained via the de"nition

T =
2
〈
Ek

〉

Nnd
(5)

where Ek is the kinetic energy, N is the number of par-
ticles and nd is the number of degrees of freedom, the
dimensionality of the system.

Pressure pro"le is obtained with the pressure tensor
components normal to the surface PN(x) and tangential
to the surfacePT(x), which are calculated using the Irving
andKirkwood [6,28–31] de"nition for the LJ potential as:

PN(x) = 〈ρ(x)〉kbT

− 1
A

〈
∑

i

∑

j>i

|xij|
rij

dULJ(rij)
drij

×θ

(
x − xi
xij

)
θ

(xj − x
xij

)〉
(6)

PT(x) = 〈ρ(x)〉kbT

− 1
A

〈
∑

i

∑

j>i

(y2ij + z2ij)
2rij

dULJ(rij)
drij

1
|xij|

×θ

(
x − xi
xij

)
θ

(xj − x
xij

)〉
(7)

where 〈ρ(x)〉 is the ensemble average of the density pro-
"le in the largest direction of the box, kb and T are the
Boltzmann constant and the temperature, A the area of
the box in the y-z plane, and dULJ(rij)/drij the LJ force.

The Clausius’ virial theorem [32] is used to calculate
the pressure tensor components normal to the surface
PN(x) = Px(x) and tangential to the surface PT(x) =
(Py(x) + Pz(x))/2 for the SW potential as the ensemble
average of the momentum transfer at every collision as:

Pα(x) = 〈ρ(x)〉kbT

− 1
At

〈
∑

col′s
mi)vαijαij/|xij|

×θ

(
x − xi
xij

)
θ

(xj − x
xij

)〉
(8)

where Pα(x) and αij are the instantaneous component of
the pressure tensor and the distance between particles i
and j in the α direction, respectively, A is the transver-
sal area of the simulation box, t is the simulation elapsed
time between collisions, )vαij is the α component of the
velocity vector di#erence of the colliding pair of particles
i and j before and after the collision, and xij is the x com-
ponent of the vector joining the centres of the two atoms.
xj and xj are the x coordinates of particles i and j. This
equation applies to components Py(x) and Pz(x) of the
pressure tensor.

In the case of a planar interface the pressure tensor
is diagonal, but not homogeneous. It can be decompose
in a normal component (normal to the interface) which
corresponds to the pressure of the system P = PN + ρT,
and a parallel or tangential component PT , which can be
written as: PT = (1/2)(τyy + τzz) + ρT and P = τxx +
ρT, where τab corresponds to element ab of the pressure
tensor. For the case of an homogeneous !uid, pressure
reduces to P = 1

3 (τxx + τyy + τzz) + ρT, the mean of the
diagonal components of the pressure tensor, with τxx =
τyy = τzz plus the ideal gas pressure.

Chemical potential pro"le µ(x) is obtained with the
Widom [11] insertion particle (IP)method. The potential
energy of each inserted particle is used to calculate the
work that is needed to insert such particle in the midst of
the !uid. The relation used is:

µ(x) = µex(x) + T ln(ρ(x)) (9)

where µex(x) is given by:

µex(x) = −T ln
(〈
Wtest(x)

〉)
(10)

with

Wtest(x)) = exp(−T)U(x)) (11)



MOLECULAR PHYSICS 5

and,

)U(x) = UN+1(x) + UN(x). (12)

where β = 1/T, φ(x) is the potential energy pro"le of
the inserted particles, and ρ(x) is the density pro"le,
obtained as:

ρ(x) =
〈
N(x)
A)x

〉
(13)

where N(x) is the number of particles in a slab with area
A = LyLz and thickness )x.

5. Results for the LJ fluid

As mentioned above, this work is dedicated to show that
a !uid with attractive interactions processed with MD
in the NVT ensemble reaches e#ective thermodynamic
equilibrium when simulated in an open elongated cell
(periodic boundary conditions in all directions) within
the coexistence region. The inhomogeneous !uid is cre-
ated, by a SD process, with liquid and vapour phases
divided by an interface with "nite surface tension. The
parallelepiped shape of the cell is used to favour the
formation of a planar interface normal to its largest
direction. Mechanical equilibrium is achieved, as has
been shown by Trokhymchuk and Alejandre [18] in
the planarity of their reported pressure pro"les across
the interface. What has been missing since then is to
show that chemical and thermal equilibrium are also
achieved, this will be done by calculating the chemical

potential and temperature pro"les of the same system
mentioned above. Constant temperature, pressure and
chemical equilibrium are the thermodynamic conditions
to achieve an equilibrated state. Henceforth, planar pro-
"les of these three properties assure the equilibrium state
of the coexisting liquid–vapour system has been reached.
We used a LJ !uid simulated in an elongated box of
dimensions Lx, Ly, Lz with Lx = 2Ly, to show that the
"nal liquid–vapour system is equilibrated. A system con-
taining 5000 particles was simulated. The cuto# diame-
ter for the LJ was Rc = 3σ at a selected temperature of
T = 0.9 which lays at half point between the triple point
Tt = 0.6 and the critical point Tc = 1.15, [16] was cho-
sen. The initial density is the critical density ρ = 0.3. A
shifted LJ potential is used in all simulations. It is worth
noticing that a molecular truncated force model cut-
o#, corresponds analytically to a shifted potential energy
with a similar cuto#.

5.1. Results for T = 0.9 and ρ = 0.3

Figure 2 shows from top to bottom, density, temperature,
pressure and chemical potential pro"les.

A temperature of T = 0.9 at an overall density of
ρ = 0.3 were chosen to simulate the LJ system with 5000
particles. The noisier lines represent the actual results
obtained from 10,000 con gurations of the simulation
over 0.5million time stepswith partial results taken every
50 time steps, which explains the noisy results. Less noisy
lines are mean values taken for every 50 slabs. The noise

Figure 2. LJ profiles. From the top down, density, temperature, pressure and chemical potential profiles at T = 0.9 and ρ = 0.3 are
shown.
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has disappeared and the pro" les are quite smooth. Lines
with minima and maxima represent two independent
runswith results averaged over 100,000 con "gurations of
simulations with 5 million time steps with partial results
taken every 50 time steps, which gives much less noisier
results. These lines are an indication of long term noise.

The density pro"le is quite smooth for both runs, giv-
ing liquid and vapour densities ofρl = 0.707 ± 0.001 and
ρv = 0.0277 ± 0.0005, respectively. Temperature pro"le
is quite smooth in the liquid portion and noisier in the
vapour side for the short run and both are much more
smoother for the longer run. For this run the values of
the mean temperature of the liquid an the vapour cor-
responding to Tl = 0.8994 ± 0.0006 and Tv = 0.906 ±
0.004, respectively. Pressure pro"le are noisier for the
short run (black line) and much less noisier for both
the longer runs (green and blue lines). The maxima and
minima of the pressure are of opposite signs reinforcing
its noisy origin. Mean values for the pressure in the liq-
uid and vapour asPl = 0.021 ± 0.001 andPv = 0.0206 ±
0.0002, respectively. The chemical potential pro"le is
quite noisy and no attempt was done to perform a
longer run since we are convinced that this noise is just
that, noise. Chemical potential mean values for both
phases are µl = −3.509 ± 0.015 and µv = −3.516 ±
0.006. Pressure pro"le shows a minimum through the
interface in the left an a maximum when crossing the
interface to the right. The mean values of temperature,
pressure and chemical potential pro"les in both phases
are within their statistical error. All pro"les are planar
enough to support our point of equilibrium.

6. Results for the SW fluid

An SW potential with parameters of σ = ε = 1 and λ =
1.5σ was simulated. A similar initial con"guration of the
LJ case containing 5000 particles as an homogeneous
fcc crystal at a density ρ = 0.3 was used. This initial
density is close to the critical density of the SW !uid
ρc = 0.299 ± 0.023. A temperature ofT = 0.9which lays
between the triple point Tt = 0.6 and the critical point
temperature Tc = 1.219 ± 0.016, was selected to simu-
late the system. The critical pressure is Pc = 0.108 ±
0.008. (Critical constants were taken from Ref. [16]). An
elongated box of dimensions Lx, Ly, Lz with Lx = 2Ly was
chosen also. The SD procedure was used to produce a
slab with two parallel planar surfaces of liquid in equi-
librium with its vapour. We and everybody else that have
used this procedure suppose that the outcome is an equi-
librated con"guration. Our aim, as stated before, is to
show that this is the case, calculating the temperature,
pressure and chemical potential pro"les along and across
the perpendicular direction of the liquid slab.

6.1. Results for T = 0.9 and ρ = 0.3

Figure 3 shows from top to bottom, density, tempera-
ture, pressure and chemical potential pro"les at a tem-
perature os T = 0.9 and a global density of ρ = 0.3
obtained using the SD procedure. Noisier lines repre-
sent the actual results obtained from the simulation after
2,500 blocks of 4 million collisions with partial results
calculated every block (exception made of the pressure

Figure 3. SW profiles. From the top down, density, pressure and chemical potential profiles at T = 0.9 and ρ = 0.3 are shown.
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Figure 4. PN , PT and PN – PT profiles. For LJ (left) and SW (right) at T = 0.9 and ρ = 0.3, performed with 5000 particles. Averages taken
for 100 000 configurations for LJ and for 2500 blocks of 4 million collisions for SW. The three profiles drawn together to emphasise the
difference in scale for the three profiles. Maximum and minimum for PN are small compared with their PT counterpart.

whose contributions were accumulated at every colli-
sion). Smoother lines are mean values taken for every 25
slabs. The noise has disappeared.

As in the case of LJ, the density pro"le is quite smooth.
The black line represents the actual results obtained from
the simulation after 2500 blocks of 4 million of colli-
sions with partial results taken every block, except for
the case of the pressure whose contributions were accu-
mulated at every collision. The liquid and vapour densi-
ties obtained from the pro"le are: ρl = 0.6923 ± 0.0006
and ρv = 0.0146 ± 0.0006, respectively. The tempera-
ture pro"le is also quite smooth in the liquid portion
and noisier in the vapour side due to the small quan-
tity of atoms in the vapour phase with values of the
mean temperature of the liquid an the vapour corre-
sponding to Tl = 0.900 ± 0.001 and Tv = 0.90 ± 0.01,
respectively. Pressure and chemical potential pro"les
are noisier because these properties have larger !uctu-
ations with mean values for the pressure in the liquid
and vapour as Pl = 0.011 ± 0.001 and Pv = 0.0114 ±
0.0003, respectively; and mean values for the chemical
potential in both phases as µl = −4.02 ± 0.04 and µv =
−4.03 ± 0.02. Again, as in the case of the LJ !uid,
both pro"les are planar enough to make our point of
equilibrium.

The pressure pro"le is smoother than its LJ counter-
part mainly due to the wider slabs used and that every
collision is taken into account in calculating the mean

values. It presents a maximum and a minimum, just
like its LJ counterpart, but in this case it seems to have
converged. We have run it for at another run as long
as the "rst and the maximum and minimum remain
the same. The values for the liquid Pl = 0.011 ± 0.001
and for the vapour Pv = 0.0114 ± 0.0003. The chemical
potential pro"le is noisier because it has larger !uctua-
tions and the con"gurations used to calculate the mean
were only 1225. The chemical potentials are for the liquid
phaseµl = −4.02 ± 0.04 and for the vapour phaseµv =
−4.03 ± 0.02. This pro"le is planar enough to support
our point of equilibrium.

Figure 4 shows the components of the pressure ten-
sor of the LJ !uid (left) and of the SW !uid (right). From
top to bottom: normal PN , tangential PT and normal-
tangential PN −PT , drawn together with PN and PT .
The normal components have a maximum and a mini-
mumwhile the tangential components have twominima,
and the normal-tangential components present twomax-
ima at the interfaces which account for the twice surface
tension of the !uid.

7. Concluding remarks

The SD phenomenon is of much help in preparing equi-
librated liquid–vapour systems with two planar inter-
phases. The fact that the thermodynamic data obtained
from this procedure agree with data calculated by other
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methods is a strong argument to support the idea of the
samples achieving true equilibrium. Specially when con-
fronted with the GEMCS data, since this MC method, in
its development requires that the chemical potentials are
equal in both phases, even though they do not explicitly
appear as variables in the simulation.

The SD phenomenon is of much help in prepar-
ing equilibrated liquid–vapour systems with two planar
interphases, with a total density near the critical den-
sity of the system. Trokhymchuk and Alejandre [18]
reported the pressure pro"les for the LJ !uid with several
cut o# distances of the potential, calculated with Monte
Carlo andmolecular dynamics methods, establishing the
unequivocal condition of mechanical equilibrium of the
system. It rested to show that the same thing happened
to the temperature and chemical potential pro"les, to
establish the full thermal and chemical equilibrium con-
ditions. This is the main aim of this work. The fact that
the thermodynamic data obtained from this procedure
agree with data calculated by other methods is a strong
argument to support the idea of the samples achiev-
ing true equilibrium. It is also a very easy procedure to
obtain a planar interphase in a very short time, spinodal
decomposition is a picosecond phenomena. An alter-
native method to prepare a slab of liquid is to initiate
the simulation with a normal cubic box at a liquid den-
sity until it reaches equilibrium. The cubic box is then
stretched taking care that the global density is near the
critical density of the !uid. The simulation is allowed to
achieve an equilibrium state for the liquid–vapour inter-
face. This procedure takes longer and is more di$cult
to automate. ‘Yet it is necessary to set up and simulate
with considerable expense adjoining bulk phases which
in some sense do not contribute to the properties of inter-
est. This ine$ciency seems to be unavoidable’ [16]. For
some people this is not enough. A more stringent test of
linear temperature, pressure and chemical potential pro-
"les is in order. This test is achieved in this communica-
tion, where it is shown that the calculated pro"les for two
di#erent attractive potential give equivalent linear results,
within the statistical noise of the temperature, pressure
and chemical potential pro"les. Temperature, pressure
and chemical potential pro"les, for both LJ and SW !uids
are quite horizontal, even though the former (LJ) looks
noisier because the density intervals used to calculate
them were half the size as those used in the SW case.
Longer runs were performed to calculate the pressure
pro"le for the LJ system (10 times as long) to make sure
that the noise in the "gures was just that. Curves black,
green and blue in Figure 2 support this point. Longer
runs were done only for temperature and pressure only,
not for chemical potential which is more costly. Fluctu-
ations in pressure and chemical potential are similar, so

conclusions for the pressure pro"le in terms of statistical
errors can be applied to the chemical potential as well.

Longer runs were performed to analyse the pressure
for the SW !uid. Themaximum andminimumpresent in
this system prevail for this longer runs in contrast to the
LJ system where those features disappear as noise once
the run is long enough (see Figure 2). Assuming that the
features in the SW system pressure are real, even though
small, some questions arise. Is the discontinuous nature
of the SW potential against the continuous character of
the LJ makes the di#erence? Is the de"nition of the nor-
mal component of the pressure tensor applicable to the
interphase or an alternative de"nition for this region is
needed? Is the Clausius’ virial theorem applicable across
the interphase? More research is needed to answer these
questions, that we plan to perform in the near future.
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